Graphing Techniques and Transformations

Learning Objectives

1. Graph functions using vertical and horizontal shifts
2. Graph functions using compressions and stretches
3. Graph functions using reflections about the x-axis and the y-axis

Remarks

We can use our basic functions to create new functions by

- Horizontal Translations
- Vertical Translations
- Reflection across x-axis
- Reflection across y-axis
- Stretching/Shrinking along x-coordinate
- Stretching/Shrinking along y-coordinate
Translation: \(f(x) + k \)

Graph \(y_1 = x^2 \) on your graphing calculator.

We will then compare this with different graphs to generalize the effect of \(k \).

- \(k = -4 \)
- \(k = -2 \)
- \(k = 2 \)
- \(k = 4 \)
Translation: \(f(x) + k \)

Graph \(y_1 = x^2 \) on your graphing calculator and then graph \(y_2 \) given below to determine the movement of the graph of \(y_2 \) as compared to \(y_1 \). Generalize the effect of \(k \)

<table>
<thead>
<tr>
<th>(y_2)</th>
<th>Direction of Translation</th>
<th>Units Translated</th>
<th>Value of (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2 - 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x^2 - 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x^2 + 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x^2 + 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical Translations

\[y = f(x - h) + k \]
\[y - k = f(x - h) \]

- The value of \(k \) causes the graph of \(f(x) \) to translate up or down (vertically)
- If \(k > 0 \), the graph shifts \(k \) units up
- If \(k < 0 \) then the graph shifts \(k \) units down

Translation: \(f(x - h) \)

Graph \(y_1 = x^2 \) on your graphing calculator

We will then compare this with different graphs to generalize the effect of \(h \)
Translation: $f(x - h)$

$h = 4$

$h = 2$

$h = -2$

$h = -4$

Graph $y_1 = x^2$ on your graphing calculator and then graph y_2 given below to determine the movement of the graph of y_2 as compared to y_1. Generalize the effect of h.

<table>
<thead>
<tr>
<th>y_2</th>
<th>Direction of Translation</th>
<th>Units Translated</th>
<th>Value of h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x - 4)^2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(x - 2)^2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(x + 2)^2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(x + 4)^2$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Horizontal Translations

\[y = f(x-h) + k \]
\[y - k = f(x-h) \]

- The value of \(h \) causes the graph of \(f(x) \) to translate left or right (horizontally)
- If \(h < 0 \), the graph shifts \(h \) units left
- If \(h > 0 \), the graph shifts \(h \) units right

Horizontal and Vertical Translations

\[f(x-h) + k \]

- The value of \(h \) causes the graph of \(f(x) \) to translate left or right (horizontally)
 - If \(h < 0 \), the graph shifts \(h \) units left
 - If \(h > 0 \), the graph shifts \(h \) units right

- The value of \(k \) causes the graph of \(f(x) \) to translate up or down (vertically)
 - If \(k > 0 \), the graph shifts \(k \) units up
 - If \(k < 0 \) then the graph shifts \(k \) units down

x- and y-Axis Reflections

- The graph of \(y = -f(x) \) is the same as graph of \(f(x) \) but reflected about the \(x \)-axis
- The graph of \(y = f(-x) \) is the same as graph of \(f(x) \) but reflected about the \(y \)-axis
Caution in Translations of Graphs

- The order in which transformations are made is important.
- If they are made in a different order, a different equation can result.
 - For example, the graph of $y = 2|x + 3|$ is obtained by \textbf{first} stretching the graph of $y = |x|$ by a factor of 2, and \textbf{then} translating 3 units upward.
 - The graph of $y = 2|x + 3|$ is obtained by \textbf{first} translating horizontally 3 units to the left, and \textbf{then} stretching by a factor of 2.

Vertical Compression: $y = a \cdot f(x)$

Graph $y_1 = x^2$ on your graphing.

We will generalize the effect of a.

Vertical Compression: $y = a \cdot f(x)$

- $a = 1/2$
- $a = 1/3$
Vertical Compression: \(y = a \cdot f(x) \)

Graph \(y_1 = x^2 \) on your graphing calculator and then graph \(y_2 \) given below to determine the shape of the graph of \(y_2 \) as compared to \(y_1 \). Generalize the effect of \(a \)

<table>
<thead>
<tr>
<th>(y_2)</th>
<th>Graph Appearance</th>
<th>y-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1/2)x^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((1/3)x^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical Stretch: \(y = a \cdot f(x) \)

Graph \(y_1 = x^2 \) on your graphing calculator

We will generalize the effect of \(a \)

\[a = 2 \]

\[a = 3 \]
Graph $y_1 = x^2$ on your graphing calculator and then graph y_2 given below to determine the shape of the graph of y_2 as compared to y_1. Generalize the effect of a

<table>
<thead>
<tr>
<th>y_2</th>
<th>Graph Appearance</th>
<th>y-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2x^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$3x^2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical Stretch: $y = a \cdot f(x)$

The graph of $y = a \cdot f(x)$ is obtained from the graph of $y = f(x)$ by

- Vertically stretching the graph if $|a| > 1$
- Vertically compressing the graph if $0 < |a| < 1$

As a get larger positive it appear narrower
As a get smaller positive it appear wider

As a get larger negative it appear narrower
As a get smaller negative it appear wider
Horizontal Stretches: $y = f(a \cdot x)$

Graph $y_1 = x^2$ on your graphing.

We will generalize the effect of a

- $a = 1/2$

- $a = 1/3$

- $a = 2$

- $a = 3$
Horizontal Stretches: \(y = f(a \cdot x) \)

Graph \(y_1 = x^2 \) on your graphing. Generalize the effect of \(a \)

<table>
<thead>
<tr>
<th>(y_2)</th>
<th>Graph Appear to</th>
<th>y-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1/3)x^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((1/2)x^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((2)x^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>((3)x^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Horizontal Stretches: \(y = f(a \cdot x) \)

The graph of \(y = f(a \cdot x) \) is obtained from the graph of \(y = f(x) \) by
- horizontally compressing the graph if \(|a| > 1\)
- horizontally stretching the graph if \(0 < |a| < 1\)

Reflection Across x-axis: \(y = -f(x) \)

Graph \(y_1 = \sqrt{x} \) on your graphing

We will learn the effect of reflection across the x-axis
Reflection Across y-axis: \(y = f(-x) \)

Graph \(y = \sqrt{x} \) on your graphing

We will learn the effect of reflection across the y-axis

x- and y-Axis Reflections

- The graph of \(y = -f(x) \) is the same as graph of \(f(x) \) but reflected about the x-axis.

- The graph of \(y = f(-x) \) is the same as graph of \(f(x) \) but reflected about the y-axis.

General Transformation

Given \(y = f(x) \) the graph of \(y = af(x-h)+k \)

Can be obtained by the following sequence of transformations

- Horizontal shift (to right if \(h > 0 \))
- Reflection across x-axis if \(a < 0 \)
- Stretch if \(|a| > 1 \)
- Compression (shrink) if \(|a| < 1 \)
- Vertical shift (up if \(k > 0 \))
Sequence of Transformations

Point – by – Point Method

• Follow order of operations
• Select two points (or more) from the original function and move that point one step at a time
• Plot these points and sketch the new graph

Example

Given \(f(x) = x^3 \) find

\[3f(x+2) - 1 = 3(x+2)^3 - 1 \]

\(f(x) \) contains (-1,-1), (0,0), (1,1)

1\(^{st}\) transformation would be \((x+2)\), which moves the function left 2 units (subtract 2 from each x), pts. are now (-3,-1), (-2,0), (-1,1)

2\(^{nd}\) transformation would be 3 times all the y's, pts. are now (-3,-1), (-2,0), (-1,3)

3\(^{rd}\) transformation would be subtract 1 from all y's, pts. are now (-3,-2), (-2,-1), (-1,2)

Example

Given \(f(x) = x^3 \) find

\[3f(x+2) - 1 = 3(x+2)^3 - 1 \]

Begin with \(f(x) = x^3 \)
Create \[3f(x+2) - 1 = 3(x+2)^3 - 1 \]
Example

Given \(f(x) = x^3 \) find
\[3f(x + 2) - 1 = 3(x + 2)^3 - 1 \]

\(f(x) = x^3 \)

Translate left 2 units

\(f(x) = (x + 2)^3 \)

Example

Given \(f(x) = x^3 \) find
\[3f(x + 2) - 1 = 3(x + 2)^3 - 1 \]

\(f(x) = (x + 2)^3 \)

Stretch x 3 vertically

Example

Given \(f(x) = x^3 \) find
\[3f(x + 2) - 1 = 3(x + 2)^3 - 1 \]

\(f(x) = 3(x + 2)^3 \)

Translate 1 unit down

\(f(x) = 3(x + 2)^3 - 1 \)
Example

Given \(f(x) = x^3 \) find

\[3f(x+2) - 1 = 3(x+2)^3 - 1 \]

We can select several points from \(f(x) = x^3 \)

\((-1,-1), (0,0), (1,1), (2,8)\) and using \(f(x) = 3(x+2)^3 - 1 \)

We have:

\(-1, -1\)	\((-1+2)^3 - 1 = 2\)
\((0,0)\)	\((0+2)^3 - 1 = 23\)
\((1,1)\)	\((1+2)^3 - 1 = 80\)
\((2,8)\)	\((2+2)^3 - 1 = 191\)

Example

Given \(f(x) = x^3 \) find

\[3f(x+2) - 1 = 3(x+2)^3 - 1 \]

Example

Given \(f(x) = x^3 \) find

\[3f(x+2) - 1 = 3(x+2)^3 - 1 \]